Category Archives: MadCapIdea

MADCAP IDEA PART 2 : ADDING DI/IOC TO THE CLIENT SIDE FRONT END WEB SITE

 

Last Time

Last time we built a bare bones react/webpack/babel/typescript/bootstrap web site. You can read that post here should you wish to: https://sachabarbs.wordpress.com/2017/05/15/madcap-idea-part-1-start-of-the-client-side-portion-of-the-web-site/

 

PreAmble

This post will be about adding DI/IOC to the bear bones no thrills client portion of the web site that we built last time. Just as a reminder this is part of my ongoing set of posts which I talk about here :

https://sachabarbs.wordpress.com/2017/05/01/madcap-idea/, where we will be building up to a point where we have a full app using lots of different stuff, such as these

  • WebPack
  • React.js
  • React Router
  • TypeScript
  • Babel.js
  • Akka
  • Scala
  • Play (Scala Http Stack)
  • MySql
  • SBT
  • Kafka
  • Kafka Streams

 

What Is DI/IOC?

In software engineering, dependency injection is a technique whereby one object supplies the dependencies of another object. A dependency is an object that can be used (a service). An injection is the passing of a dependency to a dependent object (a client) that would use it. The service is made part of the client’s state. Passing the service to the client, rather than allowing a client to build or find the service, is the fundamental requirement of the pattern.

This fundamental requirement means that using values (services) produced within the class from new or static methods is prohibited. The class should accept values passed in from outside.

The intent behind dependency injection is to decouple objects to the extent that no client code has to be changed simply because an object it depends on needs to be changed to a different one.

Dependency injection is one form of the broader technique of inversion of control. Rather than low level code calling up to high level code, high level code can receive lower level code that it can call down to. This inverts the typical control pattern seen in procedural programming.

As with other forms of inversion of control, dependency injection supports the dependency inversion principle. The client delegates the responsibility of providing its dependencies to external code (the injector). The client is not allowed to call the injector code. It is the injecting code that constructs the services and calls the client to inject them. This means the client code does not need to know about the injecting code. The client does not need to know how to construct the services. The client does not need to know which actual services it is using. The client only needs to know about the intrinsic interfaces of the services because these define how the client may use the services. This separates the responsibilities of use and construction.

There are three common means for a client to accept a dependency injection: setter-, interface- and constructor-based injection. Setter and constructor injection differ mainly by when they can be used. Interface injection differs in that the dependency is given a chance to control its own injection. All require that separate construction code (the injector) take responsibility for introducing a client and its dependencies to each other

 

From https://en.wikipedia.org/wiki/Dependency_injection

 

 

What Choices Do We To Do This When Working With React?

There are several choices we have when working with React, such as

  • Using react context
  • Using the module system
  • Using a 3rd party DI/IOC system (I will be covering this, in this post)

 

There is VERY good post on these different techniques here : https://github.com/krasimir/react-in-patterns/tree/master/patterns/dependency-injection it is a great read and I suggest you take a look to gain a better understanding of some of the more obscure areas of react (context I am looking at you)

 

 

Which 3rd Party DI/IOC Library Did I Chose And Why?

I have decided to use the https://github.com/inversify/InversifyJS (Inversify JS) DI/IOC library. Why did I chose this one, well there were quite a few reasons:

 

  • It is written in TypeScript, and I wanted to use TypeScript where possible
  • Is looks like a good full featured container, that reminds me of many other containers that I have worked with in .NET/Scala
  • It is quite mature and is in version 2.0
  • It has quite a bit of good press around it
  • The documentation is good
  • It did what I wanted

 

So those were my reasons, so what do we have to do to get Inversify JS to work?

 

Installation

 

Node Module Installation

The first steps is to make sure we have the correct node packages, to do this we just need to issue the following  NPM (node package manager) command line :

npm install inversify reflect-metadata --save

 

Once this is done you should have the following entries in your package.json file

 

image

 

 

Changes To The TypeScript “tsconfig.json” File

The other thing that Inversify JS needs is a couple of specific TypeScript settings. These need to go in the tsconfig.json file, the new lines since last time are these

 

image

 

 

 

 

That is all the setup we need, so let’s now have a look at using the Inversify JS DI/IOC classes, decorators etc etc

 

 

Creating Some Injectable Thing

Lets start with creating something that can be injected with other values, and can be resolved from the container.

 

In Inversify JS  a type has to be marked as @Injectable, which is not something you have to do in other DI/IOC offerings. This is more than likely a requirement because JavaScript is a dynamic language and these decorators are used to create extra metadata to ease in the resolution mechanisms used by ALL IOC containers.

 

To actual get something injected into a class we need to use the @Inject decorater.

 

Here is an example of a class that can be resolved from the Inversify JS  IOC container, and will also have it constructor dependencies resolves by the Inversify JS  IOC container.

 

import { injectable, inject } from "inversify";
import { TYPES } from "../types";

@injectable()
export class Foo {

    private _num: number;

    constructor(@inject(TYPES.SomeNumber) num: number) {
        this._num = num;
    }

    getNum() {
        return this._num * 2;
    }

}

 

You can see that we also use some TYPES. What are these, lets take a look at that.

export const TYPES = {
    Foo: Symbol("Foo"),
    SomeNumber: Symbol("SomeNumber")
};

 

It can be seen this TYPES constant just offers us a way of using Symbol as runtime identifiers for our dependencies.

 

Ok so now that we have a class that expects to have its dependencies satisfied from the Inversify JS IOC Container, and is itself resolvable, lets see how we can configure the container.

 

Creating The Container

I have chosen to create a singleton object for my container, which looks like this

import "reflect-metadata";
import { Container } from "inversify";
import { TYPES } from "../types";
import { Foo } from "../domain/Foo";

export class ContainerOperations {
    private static instance: ContainerOperations;
    private _container:Container = new Container();

    private constructor() {
        
    }

    static getInstance() {
        if (!ContainerOperations.instance) {
            ContainerOperations.instance = new ContainerOperations();
            ContainerOperations.instance.createInversifyContainer();
        }
        return ContainerOperations.instance;
    }

    private createInversifyContainer() {
        this.container.bind<number>(TYPES.SomeNumber).toConstantValue(22);
        this.container.bind<Foo>(TYPES.Foo).to(Foo);
    }

    public get container(): Container {
        return this._container;
    }
}

 

There are a couple of things to note in the above code:

  • We import “reflect-metadata”, “Container” and “TYPES”
  • We have our singleton that simple wraps the Inversify JS IOC container.
  • We configure the the container registrations (bindings in Inversify JS speak)

 

And that is all there is to that part. So all that is left, is to actually resolve something from the container. We will look at that next

 

Resolving Something From The Container

 

As I am using react, I will likely be using the Inversify JS IOC container to assist me with creating the props for the react components. That is not strictly relevant to this discussion, so lets just see how we can resolve an instance of the Foo IOC registered class using Inversify JS

 

We do this as follows:

import { Foo } from "./domain/Foo";
import { TYPES } from "./types";
import { ContainerOperations } from "./ioc/ContainerOperations"; 

let foo = ContainerOperations.getInstance().container.get<Foo>(TYPES.Foo);

 

It can be seen that we simple make use of the singleton (that wraps the container) to resolve our Foo class. Happy days

 

Conclusion

I have to say I did struggle a bit with getting Inversify JS up and running in my project. But I also have to say that I asked a question on the Inversify forum and the author Remo Jansen was absolutely brilliant in helping me to get my stuff to run. To the point where I pointed him at my GitHub repo, and he looked at, got it to work, and sent me a pull request.

 

Remo I tip my hat to you sir, top library, top fella. And as promised I owe you that beer

 

So once it was installed, I found it very easy to work with, it soon felt like many other IOC frameworks I have used (NInject, Funq,Munq, Castle, AutoFac, Unity, MEF take your pick). I was very happy with the results.

 

As I previously stated I will be continuing to write posts which will be tracked on Trello : https://trello.com/b/F4ykCOOM/kafka-play-akka-react-webpack-tasks

MadCap Idea part 1 : Start of the Client side portion of the web site

 

PreAmble

This post will be about building the bear bones no thrills client portion of the web site that is part of my ongoing (well this is the first, so ongoing after this) set of posts which I talk about here :

 

https://sachabarbs.wordpress.com/2017/05/01/madcap-idea/, where we will be building up to a point where we have a full app using lots of different stuff, such as these

  • WebPack
  • React.js
  • React Router
  • TypeScript
  • Babel.js
  • Akka
  • Scala
  • Play (Scala Http Stack)
  • MySql
  • SBT
  • Kafka
  • Kafka Streams

 

 

Introduction

So let me just apologize for how long this one has taken to put together, I never envisaged that this post would take me quite as long as it has. That said it has only taken 5-6 days where I have spent a maximum of 2 hours on it, and when I started this post I had a VERY rough idea of how webpack worked and what it did, but I had NEVER tried to create a webpack project from scratch, so not so bad in the end, I am fairly happy with the results.

 

Where is the code?

If you prefer to just have a look at the end result you can see that here : https://github.com/sachabarber/MadCapIdea

 

What did I want to get to work VS what is working?

Before I started this post/code I had a set list of requirements in mind, which I will show in the table below. I will also show whether I managed to get that feature to work or not

Feature Does It Work
I wanted to use Web pack to manage the build Yes
I wanted to use Typescript via Babel to regular JavaScript Yes
I wanted 3rd party libraries to be used with their typing information No
I wanted to be able to bundle my eventually transpiled JavaScript code into a single bundle Yes
I wanted to be able to use SCSS/SASS for my CSS needs and have them transpiled to CSS Yes
I wanted to be able to bundle my eventually transpiled CSS code into a single bundle Yes
I wanted to be able to import/export stuff (JS /CSS / Files etc etc) using ES6 modules Yes
I wanted to be able to trace back from minified JavaScript bundle back to my original TypeScript via SourceMaps Yes
I wanted to be able to use a fully SourceMap enabled DEVELOP version of my webpack setup Yes
I wanted to be able to run a streamlined (minification, no comments, no console.log, no SourceMap) PRODUCTION version of my webpack setup Yes
I wanted to be able to use React Yes
I wanted to be able to use Bootstrap-React Yes
I wanted to have the option to use JQuery/Lodash as I would in a simple standard JavaScript project, ie as “$” and “_” respectively Yes

 

As you can see I did actually manage to get ALL of this to work with the one exception of the typings for 3rd party libraries. The code still works at runtime, but there is just something hinky going on outside of runtime.

 

<rant>

I would just like to spend a moment ranting about just how much disinformation is out there on the whole module/typescript/webpack space. I must have read about 100 posts, all with different setups, all with different tsconfig.json files, all suggesting different webpack setups. On one hand my god weback/TypeScript are cool, but you have to be VERY careful what you apply. If you get your tsconfig.json into an invalid state, you just may find that editing TypeScript no longer works inside Visual Studio.

 

I have lost track of just how many different approaches I took to try and resolve the unknown module issue in TSX (TypeScript JSX react files). Even the official walk through on the TypeScript.org web site doesn’t work for me. Things I tried and failed at were

  • Including typings in my tsconfig.json
  • Include reference headers in my TypeScript files
  • Including a reference.ts file for 3rd party typings
  • Messing about with moving types\xxxxFramework into full blown NPM Dependencies rather than NPM DevDependencies
  • Various module settings inside of tsconfig.json

All failed, so if anyone out there that is a TypeScript / React / WebPack guru, please let me know what I am doing wrong.  The funny thing is that EVERYTHING is 100% fine at runtime.

</rant>

 

Ah that feels better, anyway now that, that is out of my system, lets continue shall we….

 

 

Webpack fundamentals

So what exactly is webpack. I think this image from the webpack web site https://webpack.js.org/ does a fairly good job of described at a glance what webpack is all about

 

image

 

So clear? No? Ok lets try some words as well

 

  • Webpack at its heart is a bundler which is able to offer module support, and is able to bundle a lot of different things into bundles
  • Webpack is able to bundle lots of thing via a technique called “loaders”, loaders can be piped one to the next (just like a command line)
  • Webpack also offers module support for
    • AMD
    • CommonJS
    • ES6 modules
  • Webpack comes with SourceMap support (one of my favorite things ever, maybe even better than ice cream, but no where near as good as BBQ food and beers)
  • Webpack comes with inbuilt minification support (thanks to Uglify.js : https://www.npmjs.com/package/uglifyjs)
  • Webpack works seamlessly with NPM (Node package manager)
  • Webpack is able to watch your files and produce new packages based on the diff of what you edited compared to what was previously built
  • Webpack supports the idea of base/different configs such that you may have different environment configs DEV|PROD (typically you want loads of debugging aids in dev)

 

So in a nutshell that is what webpack is all about. We will dive into some of the sub areas in a bit more details below before we examine the actual use cases that I set out to solve

 

This may all seem a bit overwhelming, but with webpack it mainly boils down to a config file (typically called webpack.config.js). Here is a minimal example

const { resolve } = require('path');

const webpack = require('webpack');

// plugins
const HtmlWebpackPlugin = require('html-webpack-plugin');

module.exports = (env) => {

  return {
    context: resolve('src'),
    entry: {
      app: './main.ts'
    },
    output: {
      filename: '[name].[hash].js',
      path: resolve('dist'),
      // Include comments with information about the modules.
      pathinfo: true,
    },

    resolve: {
        extensions: [
            '',
            '.js',
            '.ts',
            '.tsx'
        ]
    },

    devtool: 'cheap-module-source-map',

    module: {
      loaders: [
        { test: /\.tsx?$/, loaders: [ 'awesome-typescript-loader' ], exclude: /node_modules/ }
      ],
    },

    plugins: [

      new HtmlWebpackPlugin({
        template: resolve('src','index.html')
      })

    ]

  }
};

 

We will be diving into this, and a lot more within this post.

 

Node

As stated Node/NPM is a fairly vital part of working with webpack, so you will need to ensure you have done the following as a minimum

  • Installed node
  • Installed NPM
  • Installed webpack globally : npm install webpack –g

 

Most of the stuff I talk about in this post requires installing via NPM. But You have a copy of all the requirements inside the package.json file. Which at the time of writing this post looked like this

 

{
  "name": "task1webpackconfig",
  "version": "1.0.0",
  "description": "webpack 2 + TypeScript 2 + Babel example",
  "repository": {
    "type": "git",
    "url": "git+https://github.com/sachabarber/MadCapIdea.git"
  },
  "keywords": [
    "babel",
    "typescript",
    "webpack",
    "bundling",
    "javascript",
    "npm"
  ],
  "author": "sacha barber",
  "homepage": "https://github.com/sachabarber/MadCapIdea#readme",
  "dependencies": {
    "bootstrap": "^3.3.7",
    "jquery": "^3.2.1",
    "lodash": "^4.17.4",
    "react": "^15.5.4",
    "react-bootstrap": "^0.31.0",
    "react-dom": "^15.5.4",
    "webpack": "^2.5.0",
    "webpack-merge": "^4.1.0"
  },
  "devDependencies": {
    "@types/jquery": "^2.0.43",
    "@types/lodash": "^4.14.63",
    "@types/react": "^15.0.24",
    "@types/react-dom": "^15.5.0",
    "awesome-typescript-loader": "^3.1.3",
    "babel-core": "^6.24.1",
    "babel-loader": "^7.0.0",
    "babel-preset-es2015": "^6.24.1",
    "babel-preset-es2015-native-modules": "^6.9.4",
    "babel-preset-react": "^6.24.1",
    "css-loader": "^0.28.1",
    "extract-text-webpack-plugin": "^2.1.0",
    "html-webpack-plugin": "^2.28.0",
    "node-sass": "^4.5.2",
    "on-build-webpack": "^0.1.0",
    "sass-loader": "^6.0.3",
    "source-map-loader": "^0.2.1",
    "typescript": "^2.3.2",
    "webpack": "^2.4.1"
  },
  "scripts": {
    "build-dev": "webpack -d --config webpack.develop.js",
    "build-prod": "webpack --config webpack.production.js"
  }
}

 

 

 

Loaders

Loaders are probably the MOST important webpack concept to learn. There is practically a loader for EVERYTHING. But what exactly is a loader?

Well quite simply, a loader is a way to take some source file contents, and bundle it up in the final artifact. However things can get more sophisticated as some loaders are also able to transpile (act of converting code written in one language into another language say TypeScript –> JavaScript, or ES6 JavaScript –> ES5 JavaScript).

 

Loaders may also be piped together where the loaders declared run from right most to left most (or bottom to top, if you have them over multiple lines). This is EXTREMELY powerful, as it enables this sort of workflow in the demo code

  • Write code in TypeScript (using good stuff like classes (ok ES6 has those but you get me), interfaces, async-await etc etc)
  • Have that run through Babel.Js (bring future JS functions to you by converting your future JS into JS that runs in browsers now)
  • Finally into plain old JS that is compatible with today’s browsers (they will all catch up one day, actually they won’t so yeah babel.js is here to help)

Loaders are not just for JS, they can be used for CSS/Images/Fonts all sorts of things

 

We will see examples on this stuff when we get into the guts of things

Code dissection

In this section we will dissect the code contained at the github repo, and talk through all my initial requirements and see how they ended up being implemented

 

Bundles

One of the main reason to want to use webpack is for its bundling abilities, where I wanted to be able to bundle the following things

  • Typescript which is transpiled to JavaScript (thanks to a TypeScript loader)
  • SCSS/SASS/Css (thanks to a Sass loader)
  • Images(thanks to a Url loader)

So that is what we are trying to bundle, but there are a few things that need to be done to make that happen, so lets start with the loaders (I will be covering images and fonts later, so for now lets just talk about JavaScript and CSS bundling)

 

JavaScript Bundling

As I say I wanted the option to use TypeScript or regular JavaScript, and I also wanted to be able to use SASS or regular CSS so we start with these loaders which will traverse the source code and find all the relevant files (see the little regex that’s used to find the files) and will then bundle these files

 

let _ = require('lodash');
let webpack = require('webpack');
let path = require('path');
let fs = require("fs");
let WebpackOnBuildPlugin = require('on-build-webpack');
let ExtractTextPlugin = require('extract-text-webpack-plugin');
let HtmlWebpackPlugin = require('html-webpack-plugin');

let babelOptions = {
    "presets": ["es2015", "react"]
};

function isVendor(module) {
    return module.context && module.context.indexOf('node_modules') !== -1;
}

let entries = {
    index: './src/index.tsx'

};

let buildDir = path.resolve(__dirname, 'dist');

module.exports = {

    context: __dirname,

    entry: entries,

    output: {
        filename: '[name].bundle.[hash].js',
        path: buildDir
    },

    
    
    resolve: {
        extensions: [".tsx", ".ts", ".js", ".jsx"],
        modules: [path.resolve(__dirname, "src"), "node_modules"]
    },

    plugins: [

       

        // creates a common vendor js file for libraries in node_modules
        new webpack.optimize.CommonsChunkPlugin({
            names: ['vendor'],
            minChunks: function (module, count) {
                return isVendor(module);
            }
        }),

        // creates a common vendor js file for libraries in node_modules
        new webpack.optimize.CommonsChunkPlugin({
            name: "commons",
            chunks: _.keys(entries),
            minChunks: function (module, count) {
                return !isVendor(module) && count > 1;
            }
        }),


        //scss/sass files extracted to common css bundle
        new ExtractTextPlugin({
            filename: '[name].bundle.css',
            allChunks: true,
        }),

        new HtmlWebpackPlugin({
            filename: 'index.html',
            template: 'template.html',
        })
    ],

    module: {
        rules: [
            // All files with a '.ts' or '.tsx' extension will be handled by 'awesome-typescript-loader' 1st 
            // then 'babel-loader'
            // NOTE : loaders run right to left (think of them as a cmd line pipe)
            {
                test: /\.ts(x?)$/,
                exclude: /node_modules/,
                use: [
                  {
                      loader: 'babel-loader',
                      options: babelOptions
                  },
                  {
                      loader: 'awesome-typescript-loader'
                  }
                ]
            },


            // All files with a .css extenson will be handled by 'css-loader'
            {
                test: /\.css$/,
                loader: ExtractTextPlugin.extract(['css-loader?importLoaders=1']),
            },

            // All files with a .scss|.sass extenson will be handled by 'sass-loader'
            {
                test: /\.(sass|scss)$/,
                loader: ExtractTextPlugin.extract(['css-loader', 'sass-loader'])
            },


            // All files with a '.js' extension will be handled by 'babel-loader'.
            {
                test: /\.js$/,
                exclude: /node_modules/,
                use: [
                  {
                      loader: 'babel-loader',
                      options: babelOptions
                  }
                ]
            },


            // All output '.js' files will have any sourcemaps re-processed by 'source-map-loader'.
            {
                enforce: "pre",
                test: /\.js$/,
                loader: "source-map-loader"
            }
        ]
    }
};

 

 

The bulk of the code above is made up of loaders. But there are a few things above that deserve special call outs, namely

 

Resolve

This tells us what type of files webpack should try and resolve

 

resolve: {
	extensions: [".tsx", ".ts", ".js", ".jsx"],
	modules: [path.resolve(__dirname, "src"), "node_modules"]
},

 

Entry

These are the main entry points into the code. So for me this is the index.tsx file.

 

let entries = {
    index: './src/index.tsx'

};


entry: entries,

 

 

Output

This is where you tell webpack what the name of your final bundles will be, which will contain all the code files that matches the regex test that was setup in the loaders. It is VERY important to note that ALL the files that matches the loader regex will become part of the bundle file.

 

output: {
	filename: '[name].bundle.[hash].js',
	path: buildDir
},

 

 

TypeScript

I wanted the option to be able to use TypeScript IF I WANTED to. So to do this we need a webpack loader, there are a couple  of TypeScript loaders for webpack. But I went with awesome-typescript-loader. I also want to run my TypeScript files through Babel. We will get onto what Babel brings to the party in just a second, but for now just understand that TypeScript and Babel act as transpilers where they take JavaScript using features that is not available in regular JavaScript and transpile that code into regular JavaScript that today’s browsers understand. Obviously since the final product of both TypeScript and Babel is regular JavaScript we also need a loader for that too.

 

Here is my TypeScript/Babel/JavaScript setup.

// All files with a '.ts' or '.tsx' extension will be handled by 'awesome-typescript-loader' 1st 
// then 'babel-loader'
// NOTE : loaders run right to left (think of them as a cmd line pipe)
{
	test: /\.ts(x?)$/,
	exclude: /node_modules/,
	use: [
	  {
		  loader: 'babel-loader',
		  options: babelOptions
	  },
	  {
		  loader: 'awesome-typescript-loader'
	  }
	]
},

// All files with a '.js' extension will be handled by 'babel-loader'.
{
	test: /\.js$/,
	exclude: /node_modules/,
	use: [
	  {
		  loader: 'babel-loader',
		  options: babelOptions
	  }
	]
}

 

The other thing you need when working with TypeScript is a tsconfig.json file. Here is mine, you can see that I have configured mine to be react friendly.

 

{
  "compilerOptions": {
    "allowSyntheticDefaultImports": true,
    "moduleResolution": "node",
    "outDir": "./dist/",
    "sourceMap": true,
    "noImplicitAny": false,
    "module": "es2015",
    "target": "es5",
    "jsx": "react",
    "types" : ["jquery", "lodash", "react", "react-dom"]
  },
    "include": [
        "./src/**/*"
    ]
}

 

NOTE: You need to be a bit careful with this file, if you mess it up, you may find yourself in a quite sad position where you can no longer edit TypeScript files in Visual Studio.

 

Babel

I just showed you the babel loader, so I won’t repeat that. But just what is this Babel you speak of. Well here the blurb from the Babel.js website

 

Babel has support for the latest version of JavaScript through syntax transformers. These plugins allow you to use new syntax, right now without waiting for browser support.

 

This is the sort of stuff that Babel allows you to write right now.

 

image

 

The only other thing you need for Babel is to give a little config file called .babelrc which for me just contains this

 

{ "presets": ["es2015","react"] }

 

And that is pretty much all there is to it, you can now use these features in your JavaScript. Neato

 

SCSS

I don’t mind CSS, but these days there are better tools out there, namely LESS/SASS. What these tools offer you are things like this

  • Modular CSS (multiple files in a heirachy)
  • Nested CSS rules
  • Variables
  • etc etc

 

So it seems strange NOT to want to work with this. As with most things in webpack, it starts with a loader, where we have support for SASS and also plain CSS. Remember loaders run from right to left, so in the case of the SASS/SCSS file match, the files will 1st run through the sass-loader the the css-loader. However for plain old CSS they just go through the css-loader

 

// All files with a .css extenson will be handled by 'css-loader'
{
	test: /\.css$/,
	loader: ExtractTextPlugin.extract(['css-loader?importLoaders=1']),
},

// All files with a .scss|.sass extenson will be handled by 'sass-loader'
{
	test: /\.(sass|scss)$/,
	loader: ExtractTextPlugin.extract(['css-loader', 'sass-loader'])
},

 

The other part of the puzzle to get CSS to work is this ExtractTextPlugin that you can see mentioned in the loader sections just above. What the ExtractTextPlugin  does is to extract all the text from the individual CSS files (yep that’s right SASS/SCSS is transpiled to regular CSS) into a single CSS file.

 

//scss/sass files extracted to common css bundle
new ExtractTextPlugin({
    filename: '[name].bundle.[hash].css',
    allChunks: true,
}),

 

Don’t be too scared by the [name] and [hash] stuff just yet we will get onto to that later.

 

 

Bootstrap

So for those of you living under a rock there is a great library (started by Twitter engineers) to help create responsive uniform looking sites. This library is called twitter Bootstrap. It comes with various components and CSS, and use typeography for its icons.

 

Now Bootstrap is great, but I wanted to use React, and React has the concept of a virtual DOM, and generally speaking tries to work with it own Virtual DOM rather than the real DOM. This has led to a specialized version of Bootstrap specifically for use with React. Naturally I needed to get that to work. It is called React-Bootstrap.

 

So once we have it installed via NPM we just need to worry about a few small thing

 

Images

These are loaded by (surprise surprise) another bootstrap loader section

{ 
	test: /\.png$/, 
	loader: "url-loader?limit=100000" 
},

{ 
	test: /\.jpg$/, 
	loader: "file-loader" 
},

{
	test: /\.svg(\?.*)?$/,
	loader: 'url-loader?prefix=fonts/&name=fonts/[name].[ext]&limit=10000&mimetype=image/svg+xml'
},

 

Fonts

Fonts are also loaded by more webpack loaders

{
	test: /\.woff(\?.*)?$/,
	loader: 'url-loader?prefix=fonts/&name=fonts/[name].[ext]&limit=10000&mimetype=application/font-woff'
},

{
	test: /\.woff2(\?.*)?$/,
	loader: 'url-loader?prefix=fonts/&name=fonts/[name].[ext]&limit=10000&mimetype=application/font-woff2'
},

{
	test: /\.ttf(\?.*)?$/,
	loader: 'url-loader?prefix=fonts/&name=fonts/[name].[ext]&limit=10000&mimetype=application/octet-stream'
},

{
	test: /\.eot(\?.*)?$/, loader: 'file-loader?prefix=fonts/&name=fonts/[name].[ext]'
},

 

 

Css

So once you have all the other stuff done you can proceed to just use react-bootstrap. Here is a small example from one of my TypeScript files

 

import * as React from "react";
import * as ReactDOM from "react-dom";
import { Button } from 'react-bootstrap';

import 'bootstrap/dist/css/bootstrap.css';

export class Hello extends React.Component<HelloProps, undefined> {
    render() {
        return 
<div>
                <Button bsStyle="primary" bsSize="large">Large button</Button>
                
<h1 id="helloText">Hello from {this.props.compiler} and {this.props.framework}!</h1>

               </div>

;
    }
}

 

Which when rendered looks like this:

image

 

 

 

Lodash

Lodash is a kind of new underscore-esque library, which offers many convenience methods on collections. It is like the LINQ to obejcts of the JavaScript world. To work with Lodash you can simply import it as follows

 

import * as _ from "lodash";

 

Which we could verify quite simply with something like this, where the image below is me finding the original line in my TypeScript file within the SourceMap that was sent to the browser and putting a break point on the line I wanted to debug

 

console.log(_.VERSION);

image

 

 

JQuery

Ah the blessed Jquery, love it or hate it, there is certainly a lot of it on the web. And at times it is still very convenient, so we should really allow for it too. Thing with JQuery is that it wants to be available as global variable $ or via a property on window. Is this even possible with webpack? Well yes it is, we simply add the following bit of config within the webpack Plugins section

 

//The ProvidePlugin makes a module available as a variable in every other
//module required by webpack
new webpack.ProvidePlugin({
    $: "jquery",
    jQuery: "jquery",
    "window.jQuery": "jquery"
}),

 

That then allows us to to use Jquery like this without having to ever import it anywhere, its just automatically globally available

 

console.log("jquery");
console.log($);
console.log($.fn.jquery);

 

Again I am using the emitted SourceMap to find my original TypeScript code

 

image

 

 

Source Map Support

I also wanted to be able to debug my ORIGINAL TypeScript/JavaScript, so using SourceMaps WAS A MUST. By using source maps in webpack I am able to send the transpiled/bundled (but not minified I only do that in production mode), and also view the original code, and set break points in the original code.

 

This is the JavaScript bundle that webpack sent

 

image

 

And here is me inside the SourceMap file, see how I am in the original content here (ie the code I wrote)

 

image

 

 

This is enabled via the webpack setting

devtool: "source-map"

 

ES6 style code and modules

Another feature of using webpack is that you may using AMD/CommonJS modules (or if you included TypeScript/Babel ES6 modules). I am using TypeScript and Babel so I went with ES6 style modules, which means I can export/import things like this:

import * as React from "react";
import * as ReactDOM from "react-dom";
import * as _ from "lodash";
import { Button } from 'react-bootstrap';

import 'bootstrap/dist/css/bootstrap.css';

export interface HelloProps { compiler: string; framework: string; }

export class Foo {

    private _num: number;

    constructor(num: number) {
        this._num = num;
    }

    getNum() {
        return this._num * 2;
    }

}

 

 

Html Plugin

Ok hope you all recall but a while ago I promised to explain what was meant by [name] and [hash] in my webpack config.

  • [name] : simply gets replaced by the current bundle name
  • [hash] : produces a hash of the bundle

I think name is self explanatory, but [hash] is an interesting one.  The idea of producing a hash for your bundles is great. That means if the file contents change the hash produced is different, so the browser cache would be invalidated.

 

That’s cool. But hang on how do we normally include script/css references in our Html page, either in Script/head tags right? And if the hash is changing all the time, how can we possible link to files where we don’t know what the hash will be.

 

Luckily we just use the HtmlWebpackPlugin, which does a great job of taking a template for the original HTML we want to end up with, and putting the final bundle generated references into a copy of the template and copying that final HTML file to the desired output directory.

 

So for me I have this webpack config

new HtmlWebpackPlugin({
    filename: 'index.html',
    template: 'template.html',
})

 

Where my template.html file looks like this

<!DOCTYPE html>
<html>
    <head>
        <meta charset="UTF-8" />
        <title>Hello React!</title>
    </head>
    <body>
        
<div id="example"></div>

        <!-- Main -->
    </body>
</html>

 

And once webpack / HtmlWebpackPlugin have run their magic, the resultant HTML (ie final HTML file) looks like this:

<!DOCTYPE html>
<html>
    <head>
        <meta charset="UTF-8" />
        <title>Hello React!</title>
		<link href="vendor.bundle.b8e27b8c09179b83b9b1.css" rel="stylesheet">
		<link href="indexCss.bundle.b8e27b8c09179b83b9b1.css" rel="stylesheet"></head>
    <body>
        
<div id="example"></div>

        <!-- Main -->
		<img src="" data-wp-preserve="%3Cscript%20type%3D%22text%2Fjavascript%22%20src%3D%22vendor.bundle.b8e27b8c09179b83b9b1.js%22%3E%3C%2Fscript%3E" data-mce-resize="false" data-mce-placeholder="1" class="mce-object" width="20" height="20" alt="&lt;script&gt;" title="&lt;script&gt;" />
		<script type="text/javascript" src="index.bundle.b8e27b8c09179b83b9b1.js">
	</body>
</html>

 

See how it just inserts the CSS/JS bundles for me, and my hashing for the bundles now seemlessly happens and I don’t have to worry about it ever again

 

Separate Configs

The final thing I wanted to cover was how to have different DEV/PROD webpack configs. Up until now I have just been showing you a base config file. But we can use webpack-merge to allow us to create bespoke webpack config files for specific environments.

For example here is my Develop webpack file (which is the same as the base config file)

 

let commonConfig = require('./webpack.config.js');
let webpack = require('webpack');
let Merge = require('webpack-merge');

module.exports = function (env) {
    return Merge(commonConfig, {})
}

 

Whilst this is my Production webpack config file where I want

  • No SourceMap files
  • No console.log
  • No comments
  • Minification

 

let commonConfig = require('./webpack.config.js');
let webpack = require('webpack');
let Merge = require('webpack-merge');

module.exports = function (env) {
    return Merge(commonConfig, {
        plugins: [
          new webpack.LoaderOptionsPlugin({
              minimize: true,
              debug: false
          }),
          new webpack.optimize.UglifyJsPlugin({
              // Eliminate comments
              comments: false,
              beautify: false,
              mangle: {
                  screw_ie8: true,
                  keep_fnames: true
              },
              compress: {
                  screw_ie8: true,

                  // remove warnings
                  warnings: false,

                  // Drop console statements
                  drop_console: true
              },
              comments: false,
              sourceMap: false
          })
        ]
    })
}

 

 

 

Conclusion

So that is all I wanted to say this time, as I stated in the 1st post I will be continuing to write posts which will be tracked on Trello : https://trello.com/b/F4ykCOOM/kafka-play-akka-react-webpack-tasks

MADCAP IDEA

INTRODUCTION

So this is somewhat of strange post, or should I say what will hopefully become a decent set of posts, thing is, I have no idea how this will end up really,
as I have not embarked on a mission like this before. So please bear with me.

SO JUST WHAT IS IT THAT I AM TALKING ABOUT?

Well the way I typically like to run my blog/code project articles / life, is that I pick a technology and
just concentrate on it for a while and write about it. This time however I have decided to treat my blogging/articles as a bit more
of a work like escapade, where I will be assigning mini tasks (think JIRA tickets) to myself, some of which I know nothing about, that should/could in reality be treated
as “spikes” and end up in complete dead ends. It is about the journey after all.

I WILL have a complete list of “tickets” (AKA tasks), which may or may not be completely fleshed out in advance. I will stick to “DOING” those “tickets”
and there is an end goal in sight, and I will outline that in a top level story. I cannot however commit to any timelines, this is as much my journey as it is yours (in fact I mainly
do this stuff for myself, and would highly reccomend it as a way of self improvement). That said I hope people get something out of the series of posts that WILL UNDOUBTEDLY
come from this idea.

You can think of the tasks as “technical tasks” which make up the high level “stories” (in JIRA speak).

This may come across a bit weird, but the technogies I plan to cover in the final product is pretty much a full app, so it’s a little hard to describe in
one blog post/article. So I am hoping that by breaking it down into small chunks, each story/sub task will be a useful learning experience in
it’s own right.

SOURCE CONTROL : ORGANISATION

The idea is that each story/sub task will be a folder/subfolder which is completely independent of other stories/sub tasks (up until the final goal, which is of course
a working showcase that demostrates it all working together).

NOTE TO SELF : I am going to try really hard to do this (aren’t we sacha), as I think one topic -> one source control repo (more than likely GIT), is a good way to
correlate ideas/words on the post/article

 

WHAT DO I WANT TO WRITE


In essence I want to write a very (pardon the pun) but uber simple “uber” type app. Where there are the following funtional requirements

  • There should be a web interface that a client can use. Clients may be a “driver” or a “pickup client” requireing a delivery
  • There should be a web interface that a “pickup client” can use, that shows a “pickup client” location on a map, which the “pickup client” choses.
    The “pickup client” may request a pickup job, in which case “drivers” that are in the area bid for a job.
    The “pickup client” location should be visible to a “driver” on a map
  • A “driver” may bid for a “pickup client” job, and the bidding “driver(s)” location should be visible to the “pickup client”.
  • The acceptance of the bidding “driver” is down to the “pickup client”
  • Once a “pickup client” accepts a “driver” ONLY the assigned “driver(s)” current map position will be shown to the “pickup client”
  • When a “pickup client” is happy that they have been picked up by a “driver”, the “pickup client” may rate the driver from 1-10, and the “driver” may also rate the “pickup client” from 1-10.
  • The rating should only be available once a “pickup client” has marked a job as “completed”
  • A “driver” or a “pickup client” should ALWAYS be able to view their previous ratings. 

Whilst this may sound child’s play to a lot of you (me included if I stuck to using simply CRUD operations), I just want to point out that this app is meant as a learning experience so I will not be using a simple SignalR Hub, and a couple of database tables.

I intend to write this project using a completely different set of technologies from the norm. Some of the technology choices could easily scale to hundreds of thousands of requests per second (Kafka has your back here)

POTENTIAL TECNHOLOGIES INVOLVED

  • WebPack
  • React.js
  • React Router
  • TypeScript
  • Babel.js
  • Akka
  • Scala
  • Play (Scala Http Stack)
  • MySql
  • SBT
  • Kafka
  • Kafka Streams

Some of this will undoubtedly be covered in other blogs (such as React/Webpack), however some of it I am hoping will be quite novel/insightful material.

Who knows though there may be some of you out there that haven’t heard of Webpack, so some of that may even be new, we shall se, hopefully enough stuff for everyone.

STORIES

I will maintain a list of stories and their sub tasks using Trello here : https://trello.com/b/F4ykCOOM/kafka-play-akka-react-webpack-tasks which at the time of writing this post was the items shown below

 

TOP LEVEL STORIES

Web Site

Play Back End

  • Create a back end play app
  • Create test Kafka consumer that is able to read from JSON payload from a Kafka topic
  • Create test publisher that publishes JSON payload to a Kafka topic
  • Create Akka Publisher flow to test EventSource JS call
  • Create login API
  • Create check ranking API, which will use Kafka Active queries over KTable (or Global KTable) in the materialized streams
  • Create publish job API, which will publish out on Kafka publisher where it will send a JSON payload
  • Create receive job update API, will read JSON from Kafka Consumer where it will read in JSON payload, with the intention of updating the map of the drivers position
  • Create “Accept Job” API which will publish out on Kafka publisher where it will send JSON payload
  • Create “Bid for Job” API which will publish out on Kafka publisher where it will send JSON payload
  • Create Complete job API, which will publish out on Kafka publisher where it will send a JSON payload
  • Create ranking API, which will publish out on Kafka publisher where it will send a JSON payload
  • Create publish driver job co-ordinate update API, which will publish out on Kafka publisher where it will send a JSON payload

Kafka Streams

Create test app that tests out listening to any single Kafka publisher JSON topic, and creates streams app from it, and pushes out to an output topic

  • Create a windowed Kafka stream app that will window over all “driver bidding” jobs for a give period, and will output to an output stream, such that all the job bids can be consumed by Kafka Consumer
  • Create a paired stream of accepted job (id, client, driver id) and an updated driver position which will come in on a different stream
  • Create a ranking streams app which will store a successful ranking in a Kafka Stream KTable
  • Create a way to use Active Queries for allowing clients/drivers to query their rankings

 

 

HOW WILL PROGRESS BE TRACKED

I will simply use Trellos “Label” facility, such that done tasks will be “Green”, and there will obviously be a post/GitHub code repo folder that goes with that.

 

CAVEATS

1. I will not be concerned with connection failures, the aim of the project is to try and create a real world like project, but not actually create a end-end production grade application
2. I will be treating every run as if it were the first, I will not be storing ANY permanent state (apart from ratings potentially)
3. I will be doing things at my own pace (I have 2 kids) so it comes when it comes

4. I will try and use varied technology choices, which will in places mean that there could potentially be more work required to make it production quality